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Abstract

Denote by �n the set of all real algebraic polynomials of degree at most n and let Un := {e−x2
p(x) : p ∈

�n}, Vn := {e−xp(x) : p ∈ �n}. We prove the following exact Markov inequalities:

‖u(k)‖R �‖u(k)∗,n‖R‖u‖R, ∀u ∈ Un, ∀k ∈ N,

and

‖v(k)‖R+ �‖v(k)∗,n‖R+‖v‖R+ , ∀u ∈ Vn, ∀k ∈ N,

where ‖ · ‖R (‖ · ‖R+ ) is the supremum norm on R (R+ := [0, ∞)) and u∗,n (v∗,n) is the Chebyshev
polynomial from Un (Vn).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Denote by �n the set of all real algebraic polynomials of degree not exceeding n, and by ‖ · ‖I

the supremum norm for a given interval I ⊆ R, ‖f ‖I := supx∈I |f (x)|.
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In 1892 Markov [13] proved that if f ∈ �n satisfies ‖f ‖[−1,1] �1 then for every k = 1, . . . , n

‖f (k)‖[−1,1] �T (k)
n (1),

where the equality is attained only for the Chebyshev polynomial Tn(x) := cos(n arccos x) (up
to a factor −1).

It is well known that the Markov inequality and the Chebyshev polynomial play an important
role in the theory of approximations with algebraic polynomials. There are a lot of results on
Markov-type inequalities (see, e.g. [2,4,18,21,22], and the references therein). In connection with
the research in the field of the weighted approximation by polynomials, Markov-type inequal-
ities have been proved for various weights, norms and sets over which the norm is taken (cf.
[16,23,25,24,9,20,7,17,14,12,10]). In the case of supremum norm on an infinite interval there are
only two exact Markov-type inequalities (see [11,5]). They are of the form

‖(wp)′‖�Cn(w)‖wp‖, ∀p ∈ �n, (1)

where w(x) = e−x2
on R or w(x) = e−x on R+ := [0, ∞). The equality in (1) is attained only

for the corresponding weighted Chebyshev polynomial (up to a constant factor).
The aim of this paper is to extend the above inequalities to derivatives of arbitrary order. Note

that such a extension was obtained in [15] for polynomials which have only real zeros.
Next we formulate our main results. Denote by Un the space of all weighted polynomials of

the form u(x) = e−x2
p(x), where p ∈ �n. We shall use the notation u∗,n for the Chebyshev

polynomial from Un. Precisely, u∗,n is the unique polynomial from Un which has norm equal to
1 and there exist n + 1 points t0 < · · · < tn such that u∗,n(tk) = (−1)n−k for k = 0, . . . , n.

Theorem 1. Let u ∈ Un. Then for every natural number k, the inequality

‖u(k)‖R �‖u(k)∗,n‖R‖u‖R

holds. The equality is attained if and only if u(x) = cu∗,n(x).

Let Vn be the space of all weighted polynomials of the form v(x) = e−xp(x), where p ∈ �n,
and v∗,n be the Chebyshev polynomial from Vn.

Theorem 2. Let v ∈ Vn. Then for every natural number k, the inequality

‖v(k)‖R+ �‖v(k)∗,n‖R+‖v‖R+

holds. The equality is attained if and only if v(x) = cv∗,n(x).

In the proofs of the above theorems we use some ideas of Bojanov [2], who gave a new proof
of the inequality of Markov for algebraic polynomials.

2. Markov inequality for the weight e−x2
on R

For the sake of simplicity in this section we shall write ‖ · ‖ instead of ‖ · ‖R. To start with we
note that every non-zero polynomial from Un has at most n real zeros, counting the multiplicities
and if u ∈ Un then u′ ∈ Un+1. Next we list some of the results of [15], which will be needed in
the sequel. Let Un := {u ∈ Un : u has n simple real zeros}. It is easily seen that if u ∈ Un then
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u′ ∈ Un+1. Moreover, if x1 < · · · < xn are the zeros of u and t0 < · · · < tn are the zeros of u′,
then t0 < x1 < t1 < · · · < tn−1 < xn < tn.

The following theorem from [15] gives the solution of a problem about interpolation at extremal
points for polynomials from Un (cf. [6,19,8,1]).

Theorem A. Given positive numbers h0, . . . , hn, there exists a unique u ∈ Un and a unique set
of points t0 < · · · < tn such that

u(tk) = (−1)n−khk, k = 0, . . . , n,

u′(tk) = 0, k = 0, . . . , n. (2)

Since every u ∈ Un has exactly n+ 1 extremal points t0 < · · · < tn, Theorem A shows that the
parameters hi(u) := |u(ti)|, i = 0, . . . , n, determine u uniquely (up to multiplication by −1).
Given h = (h0, . . . , hn) where hj > 0 for j = 0, . . . , n, we shall use the notation u(h; ·) for the
unique solution of (2). Clearly, u∗,n = u(1; ·), where 1 = (1, 1, . . . , 1) ∈ Rn+1.

In [3] Bojanov and Rahman proposed a method for derivation of estimates for functionals in
the set of algebraic polynomials, having only real zeros. This method was applied in [15] to prove
the following:

Theorem B. Let u1 and u2 be polynomials from Un. Suppose that

0 < hi(u1)�hi(u2) f or i = 0, . . . , n.

Then for every natural number k, the inequalities

0 < hj (u
(k)
1 )�hj (u

(k)
2 ), j = 0, . . . , n + k, (3)

hold. In particular,

‖u(k)
1 ‖�‖u(k)

2 ‖. (4)

Moreover, the equality in (3) (for some j ) and (4) is attained if and only if hi(u1) = hi(u2) for
all i = 0, . . . , n.

Consequently, the absolute values of the local extrema of the kth derivative of a weighted
polynomial u ∈ Un are strictly increasing functions of h0(u), . . . , hn(u).

In the next lemma we study a Birkhoff-type interpolation problem for weighted polynomials.

Lemma 1. Let k and m be natural numbers. Given points t1 < · · · < tm, � and arbitrary values
{aj }m+2

1 , there exists a unique polynomial g ∈ Um+1 for which

g(tj ) = aj , j = 1, . . . , m, g(k)(�) = am+1, g(k+1)(�) = am+2. (5)

Proof. Conditions (5) can be considered as a system of linear equations for the coefficients in
the representation

g(x) = e−x2
m+1∑
i=0

bix
i .
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In order to prove the existence and the uniqueness of the solution of (5), it is sufficient to prove
that the corresponding homogeneous system

g(tj ) = 0, j = 1, . . . , m, g(k)(�) = 0, g(k+1)(�) = 0 (6)

has only the trivial solution. The proof goes by induction on k, for arbitrary m, t1 < · · · < tm and
�.

Let k = 1. If � = tj for some j ∈ {1, . . . , m} then g has m+2 zeros, counting the multiplicities,
hence g ≡ 0. So, we may assume � /∈ {t1, . . . , tm}. By Rolle’s theorem, g′(x) changes its sign at
some points �i ∈ (ti , ti+1) for i = 1, . . . , m − 1. But g(x) → 0 for x → ±∞, hence g′(x) has
also zeros �0 < t0 and �m > tm.

If � /∈ {�0, . . . , �m}, then according to (6), � is at least double zero of g′. Thus g′ ∈ Um+2 has
m+ 3 zeros counting the multiplicities. It follows that g is a constant, i.e. g ≡ 0, provided m�1.

Otherwise, if � = �j for some j ∈ {0, . . . , m} then g′ must change its sign at �. Taking in view
(6), we conclude that g′ has at least triple zero at �, which also implies g ≡ 0.

Let k�2. Assume the assertion holds for k − 1. Let g satisfy (6) for some t1 < · · · < tm
and �. Consider the polynomial g1(x) := g′(x). Clearly, g1 ∈ Um+2, g1 vanishes at some points
�0 < · · · < �m and g

(k−1)
1 (�) = g

(k)
1 (�) = 0. Then by the inductional hypothesis g1 ≡ 0, hence

g ≡ 0. The lemma is proved. �

Lemma 2. Let u ∈ Un, ‖u‖ = 1. Let t1 < · · · < tm (m�n) be the points for which |u(tk)| = 1.
If g ∈ Un vanishes at t1, . . . , tm then

‖u + �g‖ = 1 + o(�) as � → 0.

Proof. We can choose � > 0 so that

tj /∈ (ti − �, ti + �)

for i 
= j (i, j = 1, . . . , n). Since u + �g tends uniformly to u on R as � → 0 there exists an
�0 > 0 such that

|u(x) + �g(x)| < 1 for x /∈
n⋃

i=1

[ti − �, ti + �],

provided 0 < � < �0. Hence

‖u + �g‖ = max
i=1,...,m

‖u + �g‖[ti−�,ti+�].

Let i be a fixed number from {1, . . . , m}. Without loss of generality we may assume that
u(ti) = 1. We define xi(�) ∈ (ti − �, ti + �) as the solution of u(x) + �g(x) = 1, farthest from
ti . (It is possible xi(�) = ti .)

Let �i (�) := {x : |x − ti |� |xi(�) − ti |}. Clearly

‖u + �g‖[ti−�,ti+�] = ‖u + �g‖�i (�).

Let u′(ti) = · · · = u(2l−1)(ti) = 0, u(2l)(ti ) < 0. (Recall that ti is a local maximum of u.) We can
assume that u(2l)(x)�c < 0 for x ∈ [ti − �, ti + �], provided � is sufficiently small. We have

u(ti + xi(�) − ti ) + �g(ti + xi(�) − ti ) = 1
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and by Taylor’s formula we get

1 + u(2l)(�1
i )

(2l)! (xi(�) − ti )
2l + �g′(�2

i )(xi(�) − ti ) = 1,

where �1
i , �

2
i ∈ �i (�). Hence

(xi(�) − ti )
2l−1 = − (2l)!g′(�2

i )�

u(2l)(�1
i )

= O(�),

which implies xi(�) − ti = O(�
1

2l−1 ). For each x ∈ �i (�) we have

u(x) + �g(x) = 1 + u(2l)(�1
i )

(2l)! (x − ti )
2l + �g′(�2

i )(x − ti ) = 1 + O(�
2l

2l−1 ),

which finishes the proof of Lemma 2. �

In the next lemma we prove a property of the polynomials from Un, which is well known for
algebraic polynomials.

Lemma 3. Each zero � of the derivative of a weighted polynomial u(x) = ce−x2
(x−x1) · · · (x−

xn) (c 
= 0) is a strictly increasing function of xk in the domain x1 < · · · < xn.

Proof. Denote for brevity �(x) = (x − x1) · · · (x − xn). Since

u′(x)

u(x)
= −2x + �′(x)

�(x)

and u′(�) = 0, we get

−2� +
n∑

i=1

1

� − xi

= 0.

Differentiating the last identity with respect to xk we obtain(
2 +

n∑
i=1

1

(� − xi)2

)
��

�xk

= 1

(� − xk)2 ,

which implies ��
�xk

> 0. Lemma 3 is proved. �

An immediate consequence of Lemma 3 is the following:

Corollary 3. Let u1 and u2 be two polynomials from Un having zeros x1 < · · · < xn and
y1 < · · · < yn, respectively. Suppose that

xi �yi, i = 1, . . . , n,

with at least one strict inequality. Then the zeros t1 < · · · < tn+1 of u′
1(x) and the zeros �1 <

· · · < �n+1 of u′
2(x) satisfy

ti < �i , i = 1, . . . , n + 1.
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Our next result is a weighted analogue of the famous Markov’s lemma concerning the zeros of
the algebraic polynomials.

Lemma 4. Assume that the zeros x1 < · · · < xn of u1 ∈ Un and y1 < · · · < yn−1 of u2 ∈ Un−1
satisfy the interlacing conditions

x1 �y1 �x2 � · · · �xn−1 �yn−1 �xn.

Then the zeros t1 < · · · < tn+1 of u′
1 and the zeros �1 < · · · < �n of u′

2 interlace strictly, that
is,

t1 < �1 < t2 < · · · < tn < �n < tn+1.

Proof. We will prove only the inequalities

ti < �i for i = 1, . . . , n. (7)

(The remaining ones can be established in a similar way.) Set

yk(�) :=
{

yk for k = 1, . . . , n − 1,
1
� for k = n.

The inequalities

x1 �y1(�)�x2 � · · · �yn−1(�)�xn < yn(�) (8)

hold true, provided � is a sufficiently small positive number.
Let us define u�(x) := u2(x)(1 − �x). Clearly, yk(�), k = 1, . . . , n, are the zeros of u� and let

�1(�) < · · · < �n+1(�) be the zeros of u′
�. Corollary 3 and (8) imply

ti < �i (�) for i = 1, . . . , n + 1. (9)

Note that �i (�) → �i , i = 1, . . . , n, because u
(k)
� tends uniformly to u

(k)
2 on R as � → 0.

According to Lemma 3, each of �i (�) increases strictly when � decreases. Letting � ↓ 0 in (9) we
obtain (7). Lemma 4 is proved. �

In the next lemma we compare the norms of the derivatives of the weighted Chebyshev poly-
nomials for different n.

Lemma 5. For every natural number k the inequality

‖u(k)
∗,n−1‖ < ‖u(k)∗,n‖ (10)

holds true.

Proof. Let u∗,n−1(x) = e−x2
(	n−1x

n−1 + · · ·), where 	n−1 > 0. For every � > 0 we consider
the polynomial u�(x) = u∗,n−1(x) − �xne−x2

. It is easily seen that for each j �0 we have

‖u(j)
� − u

(j)
∗,n−1‖ → 0 as � → 0. (11)

Let us fix a point b greater than all zeros of u∗,n−1. Clearly, u∗,n−1(b)> 0. Hence, for sufficiently
small �, u� has n − 1 simple zeros in (−∞, b) (close to the zeros of u∗,n−1) and u�(b) > 0. But
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the leading coefficient of u�(x) is negative, hence u� must have another real zero x(�) > b. Since
b can be arbitrarily large, it follows that x(�) → ∞ as � → 0.

Let us denote the points of the local extrema of the oscillating polynomial u� by t0(�) <

· · · < tn(�) and those of u∗,n−1 by t0 < · · · < tn−1. We have tn(�) → ∞ while (from (11))
ti (�) → ti as � → 0 for i = 0, . . . , n − 1. Also u�(tn(�)) → −0 and u�(ti(�)) → (−1)n−1−i for
i = 0, . . . , n − 1.

According to Theorem A, u�(x) = −u(h0(�); x), where h0(�) := (h0(u�), . . . , hn(u�)). If
h1(�) := (h0(u�), . . . , hn−1(u�), 1/2) then by Theorem B ‖u(k)

� ‖ < ‖u(k)(h1(�); ·)‖, provided �
is sufficiently small. Letting � → 0 we obtain

‖u(k)
∗,n−1‖�‖u(k)(h1; ·)‖, (12)

where h1 = (1, . . . , 1, 1/2) ∈ Rn+1. Using again the strict monotonicity we get

‖u(k)(h1; ·)‖ < ‖u(k)∗,n‖. (13)

Inequality (10) is a direct consequence from (12) and (13). Lemma 5 is proved. �

Proof of Theorem 1. An equivalent setting is to prove that u∗,n is the unique solution of the
extremal problem

‖u(k)‖ → sup over all u ∈ Un, ‖u‖�1. (14)

Let u be a fixed extremal polynomial to problem (14). Note that ‖u‖ = 1. We claim that |u(x)|
attains its maximal value at least at n points. Indeed, assume that t1 < · · · < tm (m�n − 1) are
all points such that |u(tk)| = 1. Let Mk := ‖u(k)‖ = |u(k)(�)|. According to Lemma 1 there exists
g ∈ Um+1 ⊆ Un satisfying the conditions

g(tj ) = 0, j = 1, . . . , m, g(k)(�) = sign u(k)(�). (15)

(For g(k+1)(�) we can take any value.)
Consider the polynomial u�(x) := (u(x) + �g(x))/‖u + �g‖. Clearly, u� ∈ Un and ‖u�‖ = 1.

It follows from Lemma 2 and (15) that

|u(k)
� (�)| = |u(k)(�) + �g(k)(�)|

1 + o(�)
= Mk + �

1 + o(�)
> Mk,

provided � is a sufficiently small positive number. The last inequality contradicts with the ex-
tremality of u. The claim is proved.

Note that the equation

|u(t)| = 1 (16)

cannot have more than n + 1 solutions. Otherwise, u′(x) would have n + 2 zeros, so u′(x) ≡ 0,
a contradiction.

Furthermore, if there exist exactly n + 1 points at which (16) holds, then it is easily seen that
u ≡ ±u∗,n, so Theorem 1 will be proved.

It remains to exclude the case when (16) has exactly n solutions. Assume the contrary and let
t1 < · · · < tn be all the points at which |u(x)| attains its maximal value.

Our next goal is to show that they are alternation points for u, i.e. u(tk) = 
(−1)k for k =
1, . . . , n, where 
 ∈ {−1, 1}. Assume the contrary. Then there exists an index i for which
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u(ti)u(ti+1) > 0, hence u′ has a zero � ∈ (ti , ti+1). Consequently, {tk}n1 and � are all the ze-

ros of u′ ∈ Un+1. If �(x) := e−x2
(x − t1) · · · (x − tn), then the zeros of u′ and � interlace, hence

by Lemma 4, the zeros of u(k+1) and �(k) interlace strictly. As u(k+1)(�) = 0, we conclude that
�(k)(�) 
= 0. Then, for sufficiently small � > 0, one of the polynomials (u ± ��)/‖u ± ��‖ will
have larger norm of the kth derivative than u, which is a contradiction.

So, the extremal polynomial u has n alternation points, hence at least n − 1 simple zeros. If
u ∈ Un−1 then u has to coincide with ±u∗,n−1, but this is impossible in view of Lemma 5. It
follows that u is a weighted polynomial of exact degree n, hence u must have n simple real zeros.
Taking into account Theorem B, we conclude that u = ±u∗,n, which is a contradiction. Theorem 1
is proved. �

3. Markov inequality for the weight e−x on R+

In this section we abbreviate the notation ‖ · ‖R+ to ‖ · ‖. The approach is similar to that in
Section 2, but the analysis is somewhat simpler, due to the translation invariance property of Vn,
that is, v(x + c) ∈ Vn for every v ∈ Vn and c ∈ R.

Lemma 6. Let k and m be natural numbers. Given points t1 < · · · < tm in [0, ∞) and values
{aj }m0 , there exists a unique polynomial g ∈ Vm for which

g(tj ) = aj , j = 1, . . . , m, g(k)(0) = a0.

Proof. As in Lemma 1, we will show that the homogeneous system of equations

v(tj ) = 0, j = 1, . . . , m, v(k)(0) = 0 (17)

admits only the trivial solution v ≡ 0 in Vm.
Let v be a solution of (17). By Rolle’s theorem, v′(x) has at least one zero �i ∈ (ti , ti+1) for

i = 1, . . . , m, where tm+1 := ∞. Repeating this argument, we conclude that v(k) vanishes at
some points �(k)

1 < · · · < �(k)
m in (0, ∞). Because of (17), v(k) ∈ Vm has m + 1 zeros in [0, ∞),

which implies v(k) ≡ 0.
Now, let v(x) = e−xp(x), where p(x) is an algebraic polynomial of degree �m. It is easily

seen that v(k)(x) = e−xq(x), where q(x) = ∑k
s=0(−1)k−s

(
k

s

)
p(s)(x). But q ≡ 0, hence

the degree of p is less than m. Taking in view (17), we conclude that p ≡ 0. The lemma is
proved. �

Lemma 7. Let v ∈ Vn, ‖v‖ = 1. Let m�n and t1 < · · · < tm be the points for which |v(tk)| = 1.
If g ∈ Vn vanishes at t1, . . . , tm then

‖v + �g‖ = 1 + o(�) if � → 0.

Proof. As in Lemma 2, it is sufficient to consider v + �g on small neighbourhoods of the points
ti , i = 1, . . . , m. If ti > 0 then the estimation of the norm of v + �g around ti is completely
analogous to that in Lemma 2. It remains to estimate v + �g around t1 if t1 = 0. Let � < t2 be
a sufficiently small, fixed positive number. Our goal is to prove that ‖v + �g‖[0,�] = 1 + o(�) as
� → 0. Without loss of generality we may assume v(0) = 1 and, as a consequence, v′(0)�0. If
v′(0) < 0 then it is easy to see that ‖v + �g‖[0,�] = 1.
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Suppose now v′(0) = 0. Set x(�) := sup{x ∈ [0, �) : v(x) + �g(x) = 1}. It follows that

‖v + �g‖[0,�] = ‖v + �g‖[0,x(�)]. Furthermore, arguing as in Lemma 2, we get x(�) = O(�
1

s−1 ),
provided v′(0) = · · · = v(s−1)(0) = 0, v(s)(0) 
= 0 for some s�2. Consequently, if x ∈ [0, x(�)]
then v(x) + �g(x) = 1 + O(�

s
s−1 ), which finishes the proof of Lemma 7. �

Proof of Theorem 2. As in Theorem 1, it is sufficient to prove that v∗,n is the unique solution of
the extremal problem

‖v(k)‖ → sup over all v ∈ Vn, ‖v‖�1. (18)

Let v be a fixed extremal polynomial to problem (18). Clearly, ‖v‖ = 1 and the equation

|v(t)| = 1 (19)

cannot have more than n + 1 solutions on [0, ∞). We claim that |v(x)| attains its maximal value
at exactly n+ 1 points. On the contrary, we assume that Eq. (19) has exactly m�n solutions t1 <

· · · < tm in [0, ∞). There exists a point � ∈ [0, ∞) such that Mk := ‖v(k)‖ = |v(k)(�)|. Without
loss of generality we suppose that � = 0. (Otherwise, we can consider v1(x) := v(x + �) ∈ Vn.
We have ‖v1‖�‖v‖ = 1 and |v(k)

1 (0)| = Mk , hence v1 is also extremal in (18), which implies
‖v1‖ = 1. In addition, the equation |v1(x)| = 1 also has less than n + 1 solutions in [0, ∞).)
Lemma 6 ensures the existence of a g ∈ Vm ⊆ Vn such that

g(tj ) = 0, j = 1, . . . , m, g(k)(0) = sign v(k)(0). (20)

If v�(x) := (v(x) + �g(x))/‖v + �g‖ then v� ∈ Vn and ‖v�‖ = 1. Using Lemma 7 and (20) (as in
the proof of Theorem 1) we conclude that |v(k)

� (0)| > Mk , provided � > 0 is sufficiently small.
This is a contradiction, which proves the claim.

Let us denote the points at which |v(x)| attains its maximal value by t0 < · · · < tn. Next we
will prove that they are alternation points for v, which implies v = ±v∗,n. Assume the contrary,
i.e. there exists i ∈ {0, . . . , n − 1} such that v(ti)v(ti+1) > 0. Then v′ has a zero in (ti , ti+1).
Since v′(tk) = 0 for k = 1, . . . , n and v′ ∈ Vn, we conclude that v′ ≡ 0, which is a contradiction.
Theorem 2 is proved. �

Remark. In fact ‖v(k)∗,n‖ = |v(k)∗,n(0)|. Otherwise, a proper translation of v∗,n will produce a
different extremal polynomial in (18).
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