Exact Markov inequalities for the Hermite and Laguerre weights ${ }^{\text {tu }}$

Lozko Milev*, Nikola Naidenov
Department of Mathematics, University of Sofia, Blvd. James Boucher 5, 1164 Sofia, Bulgaria

Received 11 August 2004; accepted 26 September 2005
Communicated by Tamás Erdélyi
Available online 7 December 2005

Abstract

Denote by π_{n} the set of all real algebraic polynomials of degree at most n and let $U_{n}:=\left\{e^{-x^{2}} p(x): p \in\right.$ $\left.\pi_{n}\right\}, V_{n}:=\left\{e^{-x} p(x): p \in \pi_{n}\right\}$. We prove the following exact Markov inequalities: $$
\left\|u^{(k)}\right\|_{\mathbb{R}} \leqslant\left\|u_{*, n}^{(k)}\right\|_{\mathbb{R}}\|u\|_{\mathbb{R}}, \quad \forall u \in U_{n}, \quad \forall k \in \mathbb{N},
$$ and $$
\left\|v^{(k)}\right\|_{\mathbb{R}_{+}} \leqslant\left\|v_{*, n}^{(k)}\right\|_{\mathbb{R}_{+}}\|v\|_{\mathbb{R}_{+}}, \quad \forall u \in V_{n}, \quad \forall k \in \mathbb{N},
$$ where $\|\cdot\|_{\mathbb{R}}\left(\|\cdot\|_{\mathbb{R}_{+}}\right)$is the supremum norm on $\mathbb{R}\left(\mathbb{R}_{+}:=[0, \infty)\right)$ and $u_{*, n}\left(v_{*, n}\right)$ is the Chebyshev polynomial from $U_{n}\left(V_{n}\right)$. © 2005 Elsevier Inc. All rights reserved.

MSC: 41A17; 26D10
Keywords: Weighted polynomials; Markov inequality

1. Introduction

Denote by π_{n} the set of all real algebraic polynomials of degree not exceeding n, and by $\|\cdot\|_{I}$ the supremum norm for a given interval $I \subseteq \mathbb{R},\|f\|_{I}:=\sup _{x \in I}|f(x)|$.

[^0]In 1892 Markov [13] proved that if $f \in \pi_{n}$ satisfies $\|f\|_{[-1,1]} \leqslant 1$ then for every $k=1, \ldots, n$

$$
\left\|f^{(k)}\right\|_{[-1,1]} \leqslant T_{n}^{(k)}(1)
$$

where the equality is attained only for the Chebyshev polynomial $T_{n}(x):=\cos (n \arccos x)$ (up to a factor -1).

It is well known that the Markov inequality and the Chebyshev polynomial play an important role in the theory of approximations with algebraic polynomials. There are a lot of results on Markov-type inequalities (see, e.g. [2,4,18,21,22], and the references therein). In connection with the research in the field of the weighted approximation by polynomials, Markov-type inequalities have been proved for various weights, norms and sets over which the norm is taken (cf. $[16,23,25,24,9,20,7,17,14,12,10])$. In the case of supremum norm on an infinite interval there are only two exact Markov-type inequalities (see [11,5]). They are of the form

$$
\begin{equation*}
\left\|(w p)^{\prime}\right\| \leqslant C_{n}(w)\|w p\|, \quad \forall p \in \pi_{n} \tag{1}
\end{equation*}
$$

where $w(x)=e^{-x^{2}}$ on \mathbb{R} or $w(x)=e^{-x}$ on $\mathbb{R}_{+}:=[0, \infty)$. The equality in (1) is attained only for the corresponding weighted Chebyshev polynomial (up to a constant factor).

The aim of this paper is to extend the above inequalities to derivatives of arbitrary order. Note that such a extension was obtained in [15] for polynomials which have only real zeros.

Next we formulate our main results. Denote by U_{n} the space of all weighted polynomials of the form $u(x)=e^{-x^{2}} p(x)$, where $p \in \pi_{n}$. We shall use the notation $u_{*, n}$ for the Chebyshev polynomial from U_{n}. Precisely, $u_{*, n}$ is the unique polynomial from U_{n} which has norm equal to 1 and there exist $n+1$ points $t_{0}<\cdots<t_{n}$ such that $u_{*, n}\left(t_{k}\right)=(-1)^{n-k}$ for $k=0, \ldots, n$.

Theorem 1. Let $u \in U_{n}$. Then for every natural number k, the inequality

$$
\left\|u^{(k)}\right\|_{\mathbb{R}} \leqslant\left\|u_{*, n}^{(k)}\right\|_{\mathbb{R}}\|u\|_{\mathbb{R}}
$$

holds. The equality is attained if and only if $u(x)=c u_{*, n}(x)$.
Let V_{n} be the space of all weighted polynomials of the form $v(x)=e^{-x} p(x)$, where $p \in \pi_{n}$, and $v_{*, n}$ be the Chebyshev polynomial from V_{n}.

Theorem 2. Let $v \in V_{n}$. Then for every natural number k, the inequality

$$
\left\|v^{(k)}\right\|_{\mathbb{R}_{+}} \leqslant\left\|v_{*, n}^{(k)}\right\|_{\mathbb{R}_{+}}\|v\|_{\mathbb{R}_{+}}
$$

holds. The equality is attained if and only if $v(x)=c v_{*, n}(x)$.
In the proofs of the above theorems we use some ideas of Bojanov [2], who gave a new proof of the inequality of Markov for algebraic polynomials.

2. Markov inequality for the weight $e^{-x^{2}}$ on \mathbb{R}

For the sake of simplicity in this section we shall write $\|\cdot\|$ instead of $\|\cdot\|_{\mathbb{R}}$. To start with we note that every non-zero polynomial from U_{n} has at most n real zeros, counting the multiplicities and if $u \in U_{n}$ then $u^{\prime} \in U_{n+1}$. Next we list some of the results of [15], which will be needed in the sequel. Let $\mathcal{U}_{n}:=\left\{u \in U_{n}: u\right.$ has n simple real zeros $\}$. It is easily seen that if $u \in \mathcal{U}_{n}$ then
$u^{\prime} \in \mathcal{U}_{n+1}$. Moreover, if $x_{1}<\cdots<x_{n}$ are the zeros of u and $t_{0}<\cdots<t_{n}$ are the zeros of u^{\prime}, then $t_{0}<x_{1}<t_{1}<\cdots<t_{n-1}<x_{n}<t_{n}$.

The following theorem from [15] gives the solution of a problem about interpolation at extremal points for polynomials from \mathcal{U}_{n} (cf. [6,19,8,1]).

Theorem A. Given positive numbers h_{0}, \ldots, h_{n}, there exists a unique $u \in \mathcal{U}_{n}$ and a unique set of points $t_{0}<\cdots<t_{n}$ such that

$$
\begin{align*}
u\left(t_{k}\right) & =(-1)^{n-k} h_{k}, \quad k=0, \ldots, n, \\
u^{\prime}\left(t_{k}\right) & =0, \quad k=0, \ldots, n . \tag{2}
\end{align*}
$$

Since every $u \in \mathcal{U}_{n}$ has exactly $n+1$ extremal points $t_{0}<\cdots<t_{n}$, Theorem A shows that the parameters $h_{i}(u):=\left|u\left(t_{i}\right)\right|, i=0, \ldots, n$, determine u uniquely (up to multiplication by -1). Given $\mathbf{h}=\left(h_{0}, \ldots, h_{n}\right)$ where $h_{j}>0$ for $j=0, \ldots, n$, we shall use the notation $u(\mathbf{h} ; \cdot)$ for the unique solution of (2). Clearly, $u_{*, n}=u(\mathbf{1} ; \cdot)$, where $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{R}^{n+1}$.

In [3] Bojanov and Rahman proposed a method for derivation of estimates for functionals in the set of algebraic polynomials, having only real zeros. This method was applied in [15] to prove the following:

Theorem B. Let u_{1} and u_{2} be polynomials from \mathcal{U}_{n}. Suppose that

$$
0<h_{i}\left(u_{1}\right) \leqslant h_{i}\left(u_{2}\right) \quad \text { for } i=0, \ldots, n .
$$

Then for every natural number k, the inequalities

$$
\begin{equation*}
0<h_{j}\left(u_{1}^{(k)}\right) \leqslant h_{j}\left(u_{2}^{(k)}\right), \quad j=0, \ldots, n+k, \tag{3}
\end{equation*}
$$

hold. In particular,

$$
\begin{equation*}
\left\|u_{1}^{(k)}\right\| \leqslant\left\|u_{2}^{(k)}\right\| . \tag{4}
\end{equation*}
$$

Moreover, the equality in (3) (for some j) and (4) is attained if and only if $h_{i}\left(u_{1}\right)=h_{i}\left(u_{2}\right)$ for all $i=0, \ldots, n$.

Consequently, the absolute values of the local extrema of the k th derivative of a weighted polynomial $u \in \mathcal{U}_{n}$ are strictly increasing functions of $h_{0}(u), \ldots, h_{n}(u)$.

In the next lemma we study a Birkhoff-type interpolation problem for weighted polynomials.
Lemma 1. Let k and m be natural numbers. Given points $t_{1}<\cdots<t_{m}, \xi$ and arbitrary values $\left\{a_{j}\right\}_{1}^{m+2}$, there exists a unique polynomial $g \in U_{m+1}$ for which

$$
\begin{equation*}
g\left(t_{j}\right)=a_{j}, \quad j=1, \ldots, m, \quad g^{(k)}(\xi)=a_{m+1}, \quad g^{(k+1)}(\xi)=a_{m+2} . \tag{5}
\end{equation*}
$$

Proof. Conditions (5) can be considered as a system of linear equations for the coefficients in the representation

$$
g(x)=e^{-x^{2}} \sum_{i=0}^{m+1} b_{i} x^{i}
$$

In order to prove the existence and the uniqueness of the solution of (5), it is sufficient to prove that the corresponding homogeneous system

$$
\begin{equation*}
g\left(t_{j}\right)=0, \quad j=1, \ldots, m, \quad g^{(k)}(\xi)=0, \quad g^{(k+1)}(\xi)=0 \tag{6}
\end{equation*}
$$

has only the trivial solution. The proof goes by induction on k, for arbitrary $m, t_{1}<\cdots<t_{m}$ and ξ.

Let $k=1$. If $\xi=t_{j}$ for some $j \in\{1, \ldots, m\}$ then g has $m+2$ zeros, counting the multiplicities, hence $g \equiv 0$. So, we may assume $\xi \notin\left\{t_{1}, \ldots, t_{m}\right\}$. By Rolle's theorem, $g^{\prime}(x)$ changes its sign at some points $\xi_{i} \in\left(t_{i}, t_{i+1}\right)$ for $i=1, \ldots, m-1$. But $g(x) \rightarrow 0$ for $x \rightarrow \pm \infty$, hence $g^{\prime}(x)$ has also zeros $\xi_{0}<t_{0}$ and $\xi_{m}>t_{m}$.

If $\xi \notin\left\{\xi_{0}, \ldots, \xi_{m}\right\}$, then according to (6), ξ is at least double zero of g^{\prime}. Thus $g^{\prime} \in U_{m+2}$ has $m+3$ zeros counting the multiplicities. It follows that g is a constant, i.e. $g \equiv 0$, provided $m \geqslant 1$.

Otherwise, if $\xi=\xi_{j}$ for some $j \in\{0, \ldots, m\}$ then g^{\prime} must change its sign at ξ. Taking in view (6), we conclude that g^{\prime} has at least triple zero at ξ, which also implies $g \equiv 0$.

Let $k \geqslant 2$. Assume the assertion holds for $k-1$. Let g satisfy (6) for some $t_{1}<\cdots<t_{m}$ and ξ. Consider the polynomial $g_{1}(x):=g^{\prime}(x)$. Clearly, $g_{1} \in U_{m+2}, g_{1}$ vanishes at some points $\xi_{0}<\cdots<\xi_{m}$ and $g_{1}^{(k-1)}(\xi)=g_{1}^{(k)}(\xi)=0$. Then by the inductional hypothesis $g_{1} \equiv 0$, hence $g \equiv 0$. The lemma is proved.

Lemma 2. Let $u \in U_{n},\|u\|=1$. Let $t_{1}<\cdots<t_{m}(m \leqslant n)$ be the points for which $\left|u\left(t_{k}\right)\right|=1$. If $g \in U_{n}$ vanishes at t_{1}, \ldots, t_{m} then

$$
\|u+\varepsilon g\|=1+o(\varepsilon) \quad \text { as } \varepsilon \rightarrow 0
$$

Proof. We can choose $\delta>0$ so that

$$
t_{j} \notin\left(t_{i}-\delta, t_{i}+\delta\right)
$$

for $i \neq j(i, j=1, \ldots, n)$. Since $u+\varepsilon g$ tends uniformly to u on \mathbb{R} as $\varepsilon \rightarrow 0$ there exists an $\varepsilon_{0}>0$ such that

$$
|u(x)+\varepsilon g(x)|<1 \quad \text { for } x \notin \bigcup_{i=1}^{n}\left[t_{i}-\delta, t_{i}+\delta\right],
$$

provided $0<\varepsilon<\varepsilon_{0}$. Hence

$$
\|u+\varepsilon g\|=\max _{i=1, \ldots, m}\|u+\varepsilon g\|_{\left[t_{i}-\delta, t_{i}+\delta\right]} .
$$

Let i be a fixed number from $\{1, \ldots, m\}$. Without loss of generality we may assume that $u\left(t_{i}\right)=1$. We define $x_{i}(\varepsilon) \in\left(t_{i}-\delta, t_{i}+\delta\right)$ as the solution of $u(x)+\varepsilon g(x)=1$, farthest from t_{i}. (It is possible $x_{i}(\varepsilon)=t_{i}$.)

Let $\Delta_{i}(\varepsilon):=\left\{x:\left|x-t_{i}\right| \leqslant\left|x_{i}(\varepsilon)-t_{i}\right|\right\}$. Clearly

$$
\|u+\varepsilon g\|_{\left[t_{i}-\delta, t_{i}+\delta\right]}=\|u+\varepsilon g\|_{\Delta_{i}(\varepsilon)}
$$

Let $u^{\prime}\left(t_{i}\right)=\cdots=u^{(2 l-1)}\left(t_{i}\right)=0, u^{(2 l)}\left(t_{i}\right)<0$. (Recall that t_{i} is a local maximum of u.) We can assume that $u^{(2 l)}(x) \leqslant c<0$ for $x \in\left[t_{i}-\delta, t_{i}+\delta\right]$, provided δ is sufficiently small. We have

$$
u\left(t_{i}+x_{i}(\varepsilon)-t_{i}\right)+\varepsilon g\left(t_{i}+x_{i}(\varepsilon)-t_{i}\right)=1
$$

and by Taylor's formula we get

$$
1+\frac{u^{(2 l)}\left(\xi_{i}^{1}\right)}{(2 l)!}\left(x_{i}(\varepsilon)-t_{i}\right)^{2 l}+\varepsilon g^{\prime}\left(\xi_{i}^{2}\right)\left(x_{i}(\varepsilon)-t_{i}\right)=1
$$

where $\xi_{i}^{1}, \xi_{i}^{2} \in \Delta_{i}(\varepsilon)$. Hence

$$
\left(x_{i}(\varepsilon)-t_{i}\right)^{2 l-1}=-\frac{(2 l)!g^{\prime}\left(\xi_{i}^{2}\right) \varepsilon}{u^{(2 l)}\left(\xi_{i}^{1}\right)}=O(\varepsilon)
$$

which implies $x_{i}(\varepsilon)-t_{i}=O\left(\varepsilon^{\frac{1}{2 l-1}}\right)$. For each $x \in \Delta_{i}(\varepsilon)$ we have

$$
u(x)+\varepsilon g(x)=1+\frac{u^{(2 l)}\left(\eta_{i}^{1}\right)}{(2 l)!}\left(x-t_{i}\right)^{2 l}+\varepsilon g^{\prime}\left(\eta_{i}^{2}\right)\left(x-t_{i}\right)=1+O\left(\varepsilon^{\frac{2 l}{2 l-1}}\right)
$$

which finishes the proof of Lemma 2.
In the next lemma we prove a property of the polynomials from \mathcal{U}_{n}, which is well known for algebraic polynomials.

Lemma 3. Each zero η of the derivative of a weighted polynomial $u(x)=c e^{-x^{2}}\left(x-x_{1}\right) \cdots(x-$ $\left.x_{n}\right)(c \neq 0)$ is a strictly increasing function of x_{k} in the domain $x_{1}<\cdots<x_{n}$.

Proof. Denote for brevity $\omega(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$. Since

$$
\frac{u^{\prime}(x)}{u(x)}=-2 x+\frac{\omega^{\prime}(x)}{\omega(x)}
$$

and $u^{\prime}(\eta)=0$, we get

$$
-2 \eta+\sum_{i=1}^{n} \frac{1}{\eta-x_{i}}=0
$$

Differentiating the last identity with respect to x_{k} we obtain

$$
\left(2+\sum_{i=1}^{n} \frac{1}{\left(\eta-x_{i}\right)^{2}}\right) \frac{\partial \eta}{\partial x_{k}}=\frac{1}{\left(\eta-x_{k}\right)^{2}}
$$

which implies $\frac{\partial \eta}{\partial x_{k}}>0$. Lemma 3 is proved.
An immediate consequence of Lemma 3 is the following:
Corollary 3. Let u_{1} and u_{2} be two polynomials from \mathcal{U}_{n} having zeros $x_{1}<\cdots<x_{n}$ and $y_{1}<\cdots<y_{n}$, respectively. Suppose that

$$
x_{i} \leqslant y_{i}, \quad i=1, \ldots, n,
$$

with at least one strict inequality. Then the zeros $t_{1}<\cdots<t_{n+1}$ of $u_{1}^{\prime}(x)$ and the zeros $\tau_{1}<$ $\cdots<\tau_{n+1}$ of $u_{2}^{\prime}(x)$ satisfy

$$
t_{i}<\tau_{i}, \quad i=1, \ldots, n+1
$$

Our next result is a weighted analogue of the famous Markov's lemma concerning the zeros of the algebraic polynomials.

Lemma 4. Assume that the zeros $x_{1}<\cdots<x_{n}$ of $u_{1} \in \mathcal{U}_{n}$ and $y_{1}<\cdots<y_{n-1}$ of $u_{2} \in \mathcal{U}_{n-1}$ satisfy the interlacing conditions

$$
x_{1} \leqslant y_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n-1} \leqslant y_{n-1} \leqslant x_{n} .
$$

Then the zeros $t_{1}<\cdots<t_{n+1}$ of u_{1}^{\prime} and the zeros $\tau_{1}<\cdots<\tau_{n}$ of u_{2}^{\prime} interlace strictly, that is,

$$
t_{1}<\tau_{1}<t_{2}<\cdots<t_{n}<\tau_{n}<t_{n+1} .
$$

Proof. We will prove only the inequalities

$$
\begin{equation*}
t_{i}<\tau_{i} \quad \text { for } i=1, \ldots, n \tag{7}
\end{equation*}
$$

(The remaining ones can be established in a similar way.) Set

$$
y_{k}(\varepsilon):=\left\{\begin{array}{l}
y_{k} \text { for } k=1, \ldots, n-1, \\
\frac{1}{\varepsilon} \text { for } k=n .
\end{array}\right.
$$

The inequalities

$$
\begin{equation*}
x_{1} \leqslant y_{1}(\varepsilon) \leqslant x_{2} \leqslant \cdots \leqslant y_{n-1}(\varepsilon) \leqslant x_{n}<y_{n}(\varepsilon) \tag{8}
\end{equation*}
$$

hold true, provided ε is a sufficiently small positive number.
Let us define $u_{\varepsilon}(x):=u_{2}(x)(1-\varepsilon x)$. Clearly, $y_{k}(\varepsilon), k=1, \ldots, n$, are the zeros of u_{ε} and let $\tau_{1}(\varepsilon)<\cdots<\tau_{n+1}(\varepsilon)$ be the zeros of u_{ε}^{\prime}. Corollary 3 and (8) imply

$$
\begin{equation*}
t_{i}<\tau_{i}(\varepsilon) \quad \text { for } i=1, \ldots, n+1 \tag{9}
\end{equation*}
$$

Note that $\tau_{i}(\varepsilon) \rightarrow \tau_{i}, \quad i=1, \ldots, n$, because $u_{\varepsilon}^{(k)}$ tends uniformly to $u_{2}^{(k)}$ on \mathbb{R} as $\varepsilon \rightarrow 0$. According to Lemma 3, each of $\tau_{i}(\varepsilon)$ increases strictly when ε decreases. Letting $\varepsilon \downarrow 0$ in (9) we obtain (7). Lemma 4 is proved.

In the next lemma we compare the norms of the derivatives of the weighted Chebyshev polynomials for different n.

Lemma 5. For every natural number k the inequality

$$
\begin{equation*}
\left\|u_{*, n-1}^{(k)}\right\|<\left\|u_{*, n}^{(k)}\right\| \tag{10}
\end{equation*}
$$

holds true.
Proof. Let $u_{*, n-1}(x)=e^{-x^{2}}\left(\alpha_{n-1} x^{n-1}+\cdots\right)$, where $\alpha_{n-1}>0$. For every $\varepsilon>0$ we consider the polynomial $u_{\varepsilon}(x)=u_{*, n-1}(x)-\varepsilon x^{n} e^{-x^{2}}$. It is easily seen that for each $j \geqslant 0$ we have

$$
\begin{equation*}
\left\|u_{\varepsilon}^{(j)}-u_{*, n-1}^{(j)}\right\| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 \tag{11}
\end{equation*}
$$

Let us fix a point b greater than all zeros of $u_{*, n-1}$. Clearly, $u_{*, n-1}(b)>0$. Hence, for sufficiently small $\varepsilon, u_{\varepsilon}$ has $n-1$ simple zeros in $(-\infty, b)$ (close to the zeros of $\left.u_{*, n-1}\right)$ and $u_{\varepsilon}(b)>0$. But
the leading coefficient of $u_{\varepsilon}(x)$ is negative, hence u_{ε} must have another real zero $x(\varepsilon)>b$. Since b can be arbitrarily large, it follows that $x(\varepsilon) \rightarrow \infty$ as $\varepsilon \rightarrow 0$.

Let us denote the points of the local extrema of the oscillating polynomial u_{ε} by $t_{0}(\varepsilon)<$ $\cdots<t_{n}(\varepsilon)$ and those of $u_{*, n-1}$ by $t_{0}<\cdots<t_{n-1}$. We have $t_{n}(\varepsilon) \rightarrow \infty$ while (from (11)) $t_{i}(\varepsilon) \rightarrow t_{i}$ as $\varepsilon \rightarrow 0$ for $i=0, \ldots, n-1$. Also $u_{\varepsilon}\left(t_{n}(\varepsilon)\right) \rightarrow-0$ and $u_{\varepsilon}\left(t_{i}(\varepsilon)\right) \rightarrow(-1)^{n-1-i}$ for $i=0, \ldots, n-1$.

According to Theorem A, $u_{\varepsilon}(x)=-u\left(\mathbf{h}_{0}(\varepsilon) ; x\right)$, where $\mathbf{h}_{0}(\varepsilon):=\left(h_{0}\left(u_{\varepsilon}\right), \ldots, h_{n}\left(u_{\varepsilon}\right)\right)$. If $\mathbf{h}_{1}(\varepsilon):=\left(h_{0}\left(u_{\varepsilon}\right), \ldots, h_{n-1}\left(u_{\varepsilon}\right), 1 / 2\right)$ then by Theorem B $\left\|u_{\varepsilon}^{(k)}\right\|<\left\|u^{(k)}\left(\mathbf{h}_{1}(\varepsilon) ; \cdot\right)\right\|$, provided ε is sufficiently small. Letting $\varepsilon \rightarrow 0$ we obtain

$$
\begin{equation*}
\left\|u_{*, n-1}^{(k)}\right\| \leqslant\left\|u^{(k)}\left(\mathbf{h}_{1} ; \cdot\right)\right\|, \tag{12}
\end{equation*}
$$

where $\mathbf{h}_{1}=(1, \ldots, 1,1 / 2) \in \mathbb{R}^{n+1}$. Using again the strict monotonicity we get

$$
\begin{equation*}
\left\|u^{(k)}\left(\mathbf{h}_{1} ; \cdot\right)\right\|<\left\|u_{*, n}^{(k)}\right\| . \tag{13}
\end{equation*}
$$

Inequality (10) is a direct consequence from (12) and (13). Lemma 5 is proved.
Proof of Theorem 1. An equivalent setting is to prove that $u_{*, n}$ is the unique solution of the extremal problem

$$
\begin{equation*}
\left\|u^{(k)}\right\| \rightarrow \sup \quad \text { over all } u \in U_{n}, \quad\|u\| \leqslant 1 \tag{14}
\end{equation*}
$$

Let u be a fixed extremal polynomial to problem (14). Note that $\|u\|=1$. We claim that $|u(x)|$ attains its maximal value at least at n points. Indeed, assume that $t_{1}<\cdots<t_{m}(m \leqslant n-1)$ are all points such that $\left|u\left(t_{k}\right)\right|=1$. Let $M_{k}:=\left\|u^{(k)}\right\|=\left|u^{(k)}(\xi)\right|$. According to Lemma 1 there exists $g \in U_{m+1} \subseteq U_{n}$ satisfying the conditions

$$
\begin{equation*}
g\left(t_{j}\right)=0, \quad j=1, \ldots, m, \quad g^{(k)}(\xi)=\operatorname{sign} u^{(k)}(\xi) \tag{15}
\end{equation*}
$$

(For $g^{(k+1)}(\xi)$ we can take any value.)
Consider the polynomial $u_{\varepsilon}(x):=(u(x)+\varepsilon g(x)) /\|u+\varepsilon g\|$. Clearly, $u_{\varepsilon} \in U_{n}$ and $\left\|u_{\varepsilon}\right\|=1$. It follows from Lemma 2 and (15) that

$$
\left|u_{\varepsilon}^{(k)}(\xi)\right|=\frac{\left|u^{(k)}(\xi)+\varepsilon g^{(k)}(\xi)\right|}{1+o(\varepsilon)}=\frac{M_{k}+\varepsilon}{1+o(\varepsilon)}>M_{k},
$$

provided ε is a sufficiently small positive number. The last inequality contradicts with the extremality of u. The claim is proved.

Note that the equation

$$
\begin{equation*}
|u(t)|=1 \tag{16}
\end{equation*}
$$

cannot have more than $n+1$ solutions. Otherwise, $u^{\prime}(x)$ would have $n+2$ zeros, so $u^{\prime}(x) \equiv 0$, a contradiction.

Furthermore, if there exist exactly $n+1$ points at which (16) holds, then it is easily seen that $u \equiv \pm u_{*, n}$, so Theorem 1 will be proved.

It remains to exclude the case when (16) has exactly n solutions. Assume the contrary and let $t_{1}<\cdots<t_{n}$ be all the points at which $|u(x)|$ attains its maximal value.

Our next goal is to show that they are alternation points for u, i.e. $u\left(t_{k}\right)=\sigma(-1)^{k}$ for $k=$ $1, \ldots, n$, where $\sigma \in\{-1,1\}$. Assume the contrary. Then there exists an index i for which
$u\left(t_{i}\right) u\left(t_{i+1}\right)>0$, hence u^{\prime} has a zero $\gamma \in\left(t_{i}, t_{i+1}\right)$. Consequently, $\left\{t_{k}\right\}_{1}^{n}$ and γ are all the zeros of $u^{\prime} \in U_{n+1}$. If $\omega(x):=e^{-x^{2}}\left(x-t_{1}\right) \cdots\left(x-t_{n}\right)$, then the zeros of u^{\prime} and ω interlace, hence by Lemma 4, the zeros of $u^{(k+1)}$ and $\omega^{(k)}$ interlace strictly. As $u^{(k+1)}(\xi)=0$, we conclude that $\omega^{(k)}(\xi) \neq 0$. Then, for sufficiently small $\varepsilon>0$, one of the polynomials $(u \pm \varepsilon \omega) /\|u \pm \varepsilon \omega\|$ will have larger norm of the k th derivative than u, which is a contradiction.

So, the extremal polynomial u has n alternation points, hence at least $n-1$ simple zeros. If $u \in U_{n-1}$ then u has to coincide with $\pm u_{*, n-1}$, but this is impossible in view of Lemma 5. It follows that u is a weighted polynomial of exact degree n, hence u must have n simple real zeros. Taking into account Theorem B, we conclude that $u= \pm u_{*, n}$, which is a contradiction. Theorem 1 is proved.

3. Markov inequality for the weight e^{-x} on \mathbb{R}_{+}

In this section we abbreviate the notation $\|\cdot\|_{\mathbb{R}_{+}}$to $\|\cdot\|$. The approach is similar to that in Section 2, but the analysis is somewhat simpler, due to the translation invariance property of V_{n}, that is, $v(x+c) \in V_{n}$ for every $v \in V_{n}$ and $c \in \mathbb{R}$.

Lemma 6. Let k and m be natural numbers. Given points $t_{1}<\cdots<t_{m}$ in $[0, \infty)$ and values $\left\{a_{j}\right\}_{0}^{m}$, there exists a unique polynomial $g \in V_{m}$ for which

$$
g\left(t_{j}\right)=a_{j}, \quad j=1, \ldots, m, \quad g^{(k)}(0)=a_{0}
$$

Proof. As in Lemma 1, we will show that the homogeneous system of equations

$$
\begin{equation*}
v\left(t_{j}\right)=0, \quad j=1, \ldots, m, \quad v^{(k)}(0)=0 \tag{17}
\end{equation*}
$$

admits only the trivial solution $v \equiv 0$ in V_{m}.
Let v be a solution of (17). By Rolle's theorem, $v^{\prime}(x)$ has at least one zero $\xi_{i} \in\left(t_{i}, t_{i+1}\right)$ for $i=1, \ldots, m$, where $t_{m+1}:=\infty$. Repeating this argument, we conclude that $v^{(k)}$ vanishes at some points $\xi_{1}^{(k)}<\cdots<\xi_{m}^{(k)}$ in $(0, \infty)$. Because of (17), $v^{(k)} \in V_{m}$ has $m+1$ zeros in $[0, \infty)$, which implies $v^{(k)} \equiv 0$.

Now, let $v(x)=e^{-x} p(x)$, where $p(x)$ is an algebraic polynomial of degree $\leqslant m$. It is easily seen that $v^{(k)}(x)=e^{-x} q(x)$, where $q(x)=\sum_{s=0}^{k}(-1)^{k-s}\binom{k}{s} p^{(s)}(x)$. But $q \equiv 0$, hence the degree of p is less than m. Taking in view (17), we conclude that $p \equiv 0$. The lemma is proved.

Lemma 7. Let $v \in V_{n},\|v\|=1$. Let $m \leqslant n$ and $t_{1}<\cdots<t_{m}$ be the points for which $\left|v\left(t_{k}\right)\right|=1$. If $g \in V_{n}$ vanishes at t_{1}, \ldots, t_{m} then

$$
\|v+\varepsilon g\|=1+o(\varepsilon) \quad \text { if } \varepsilon \rightarrow 0
$$

Proof. As in Lemma 2, it is sufficient to consider $v+\varepsilon g$ on small neighbourhoods of the points $t_{i}, i=1, \ldots, m$. If $t_{i}>0$ then the estimation of the norm of $v+\varepsilon g$ around t_{i} is completely analogous to that in Lemma 2. It remains to estimate $v+\varepsilon g$ around t_{1} if $t_{1}=0$. Let $\delta<t_{2}$ be a sufficiently small, fixed positive number. Our goal is to prove that $\|v+\varepsilon g\|_{[0, \delta]}=1+o(\varepsilon)$ as $\varepsilon \rightarrow 0$. Without loss of generality we may assume $v(0)=1$ and, as a consequence, $v^{\prime}(0) \leqslant 0$. If $v^{\prime}(0)<0$ then it is easy to see that $\|v+\varepsilon g\|_{[0, \delta]}=1$.

Suppose now $v^{\prime}(0)=0$. Set $x(\varepsilon):=\sup \{x \in[0, \delta): v(x)+\varepsilon g(x)=1\}$. It follows that $\|v+\varepsilon g\|_{[0, \delta]}=\|v+\varepsilon g\|_{[0, x(\varepsilon)]}$. Furthermore, arguing as in Lemma 2, we get $x(\varepsilon)=O\left(\varepsilon^{\frac{1}{s-1}}\right)$, provided $v^{\prime}(0)=\cdots=v^{(s-1)}(0)=0, v^{(s)}(0) \neq 0$ for some $s \geqslant 2$. Consequently, if $x \in[0, x(\varepsilon)]$ then $v(x)+\varepsilon g(x)=1+O\left(\varepsilon^{\frac{s}{s-1}}\right)$, which finishes the proof of Lemma 7 .

Proof of Theorem 2. As in Theorem 1, it is sufficient to prove that $v_{*, n}$ is the unique solution of the extremal problem

$$
\begin{equation*}
\left\|v^{(k)}\right\| \rightarrow \text { sup } \quad \text { over all } v \in V_{n}, \quad\|v\| \leqslant 1 \tag{18}
\end{equation*}
$$

Let v be a fixed extremal polynomial to problem (18). Clearly, $\|v\|=1$ and the equation

$$
\begin{equation*}
|v(t)|=1 \tag{19}
\end{equation*}
$$

cannot have more than $n+1$ solutions on $[0, \infty)$. We claim that $|v(x)|$ attains its maximal value at exactly $n+1$ points. On the contrary, we assume that Eq. (19) has exactly $m \leqslant n$ solutions $t_{1}<$ $\cdots<t_{m}$ in $[0, \infty)$. There exists a point $\xi \in[0, \infty)$ such that $M_{k}:=\left\|v^{(k)}\right\|=\left|v^{(k)}(\xi)\right|$. Without loss of generality we suppose that $\xi=0$. (Otherwise, we can consider $v_{1}(x):=v(x+\xi) \in V_{n}$. We have $\left\|v_{1}\right\| \leqslant\|v\|=1$ and $\left|v_{1}^{(k)}(0)\right|=M_{k}$, hence v_{1} is also extremal in (18), which implies $\left\|v_{1}\right\|=1$. In addition, the equation $\left|v_{1}(x)\right|=1$ also has less than $n+1$ solutions in $[0, \infty)$.) Lemma 6 ensures the existence of a $g \in V_{m} \subseteq V_{n}$ such that

$$
\begin{equation*}
g\left(t_{j}\right)=0, \quad j=1, \ldots, m, \quad g^{(k)}(0)=\operatorname{sign} v^{(k)}(0) . \tag{20}
\end{equation*}
$$

If $v_{\varepsilon}(x):=(v(x)+\varepsilon g(x)) /\|v+\varepsilon g\|$ then $v_{\varepsilon} \in V_{n}$ and $\left\|v_{\varepsilon}\right\|=1$. Using Lemma 7 and (20) (as in the proof of Theorem 1) we conclude that $\left|v_{\varepsilon}^{(k)}(0)\right|>M_{k}$, provided $\varepsilon>0$ is sufficiently small. This is a contradiction, which proves the claim.

Let us denote the points at which $|v(x)|$ attains its maximal value by $t_{0}<\cdots<t_{n}$. Next we will prove that they are alternation points for v, which implies $v= \pm v_{*, n}$. Assume the contrary, i.e. there exists $i \in\{0, \ldots, n-1\}$ such that $v\left(t_{i}\right) v\left(t_{i+1}\right)>0$. Then v^{\prime} has a zero in $\left(t_{i}, t_{i+1}\right)$. Since $v^{\prime}\left(t_{k}\right)=0$ for $k=1, \ldots, n$ and $v^{\prime} \in V_{n}$, we conclude that $v^{\prime} \equiv 0$, which is a contradiction. Theorem 2 is proved.

Remark. In fact $\left\|v_{*, n}^{(k)}\right\|=\left|v_{*, n}^{(k)}(0)\right|$. Otherwise, a proper translation of $v_{*, n}$ will produce a different extremal polynomial in (18).

Acknowledgment

The authors thank Professor Borislav Bojanov for his valuable remarks regarding this paper.

References

[1] B. Bojanov, A generalization of Chebyshev polynomials, J. Approx. Theory 26 (1979) 293-300.
[2] B. Bojanov, Markov-type inequalities for polynomials and splines, in: C.K. Chui, L.L. Schumaker, J. Stökler (Eds.), Approximation Theory X: Abstract and Classical Analysis, Vanderbilt University Press, Nashville, TN, 2002, pp. 31-90.
[3] B.D. Bojanov, Q.I. Rahman, On certain extremal problems for polynomials, J. Math. Anal. Appl. 189 (1995) 781-800.
[4] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer, New York, Berlin, Heidelberg, 1995.
[5] H. Carley, X. Li, R.N. Mohapatra, A sharp inequality of Markov type for polynomials associated with Laguerre weight, J. Approx. Theory 113 (2001) 221-228.
[6] C. Davis, Problem 4714, Amer. Math. Monthly 63 (1956) 729;
C. Davis, Solution, Amer. Math. Monthly 64 (1957) 679-680.
[7] P. Dörfler, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987) 490-494.
[8] C.H. Fitzgerald, L.L. Schumaker, A differential equation approach to interpolation at extremal points, J. Analyse Math. 22 (1969) 117-134.
[9] G. Freud, On Markov-Bernstein type inequalities and their applications, J. Approx. Theory 19 (1977) 22-37.
[10] A.L. Levin, D.S. Lubinsky, L_{p} Markov-Bernstein inequalities for Freud weights, J. Approx. Theory 77 (1994) 229-248.
[11] X. Li, R.N. Mohapatra, R.S. Rodriguez, On Markov's inequality on R for the Hermite weight, J. Approx. Theory 75 (1993) 267-273.
[12] D.S. Lubinsky, E.B. Saff, Markov-Bernstein and Nikolskii inequalities, and Christoffel functions for exponential weights on $[-1,1]$, SIAM J. Math. Anal. 24 (1993) 528-556.
[13] V.A. Markov, On the Functions of Least Deviation from Zero in a Given Interval, St. Petersburg, 1892 (in Russian); W. Markoff, Über Polynome die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916) 213-258 (German translation with condensation).
[14] H.N. Mhaskar, General Markov-Bernstein and Nikolskii type inequalities, Approx. Theory Appl. 6 (1990) 107-117.
[15] L. Milev, Weighted polynomial inequalities on infinite intervals, East J. Approx. 5 (1999) 449-465.
[16] W. Milne, On the maximum absolute value of the derivative of $e^{-x^{2}} P_{n}(x)$, Trans. Amer. Math. Soc. 33 (1931) 143-146.
[17] G.M. Milovanović, Various extremal problems of Markov's type for algebraic polynomials, Facta Univ. Ser. Math. Inform. 2 (1987) 7-28.
[18] G.M. Milovanović, D.S. Mitrinović, Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[19] J. Mycielski, S. Paszkowski, A generalization of Chebyshev polynomials, Bull. Acad. Polonaise Sci. Série Math. Astr. et Phys. 8 (1960) 433-438.
[20] P. Nevai, V. Totik, Weighted polynomial inequalities, Constr. Approx. 2 (1986) 113-127.
[21] Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.
[22] T.J. Rivlin, Chebyshev Polynomials, second ed., Wiley, New York, 1990.
[23] E. Schmidt, Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum, Math. Ann. 119 (1944) 165-204.
[24] G. Szegő, On some problems of approximations, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964) 3-9.
[25] P. Turan, Remark on a theorem of Erhard Schmidt, Mathematica 2 (1960) 373-378.

[^0]: ${ }^{2}$ Research was supported by the Bulgarian Ministry of Education and Science under Contract MM-1402/2004.

 * Corresponding author.

 E-mail addresses: milev@fmi.uni-sofia.bg (L. Milev), nikola@fmi.uni-sofia.bg (N. Naidenov).

